9 research outputs found

    Risk bounds when learning infinitely many response functions by ordinary linear regression

    Full text link
    Consider the problem of learning a large number of response functions simultaneously based on the same input variables. The training data consist of a single independent random sample of the input variables drawn from a common distribution together with the associated responses. The input variables are mapped into a high-dimensional linear space, called the feature space, and the response functions are modelled as linear functionals of the mapped features, with coefficients calibrated via ordinary least squares. We provide convergence guarantees on the worst-case excess prediction risk by controlling the convergence rate of the excess risk uniformly in the response function. The dimension of the feature map is allowed to tend to infinity with the sample size. The collection of response functions, although potentially infinite, is supposed to have a finite Vapnik-Chervonenkis dimension. The bound derived can be applied when building multiple surrogate models in a reasonable computing time.Comment: 27 page

    Conformal Prediction for Federated Uncertainty Quantification Under Label Shift

    Full text link
    Federated Learning (FL) is a machine learning framework where many clients collaboratively train models while keeping the training data decentralized. Despite recent advances in FL, the uncertainty quantification topic (UQ) remains partially addressed. Among UQ methods, conformal prediction (CP) approaches provides distribution-free guarantees under minimal assumptions. We develop a new federated conformal prediction method based on quantile regression and take into account privacy constraints. This method takes advantage of importance weighting to effectively address the label shift between agents and provides theoretical guarantees for both valid coverage of the prediction sets and differential privacy. Extensive experimental studies demonstrate that this method outperforms current competitors.Comment: ICML 202

    Risk bounds when learning infinitely many response functions by ordinary linear regression

    No full text
    Consider the problem of learning a large number of response functions simultaneously based on the same input variables. The training data consist of a single independent random sample of the input variables drawn from a common distribution together with the associated responses. The input variables are mapped into a high-dimensional linear space, called the feature space, and the response functions are modelled as linear functionals of the mapped features, with coefficients calibrated via ordinary least squares. We provide convergence guarantees on the worst-case excess prediction risk by controlling the convergence rate of the excess risk uniformly in the response function. The dimension of the feature map is allowed to tend to infinity with the sample size. The collection of response functions, although potentially infinite, is supposed to have a finite Vapnik–Chervonenkis dimension. The bound derived can be applied when building multiple surrogate models in a reasonable computing time

    Risk bounds when learning infinitely many response functions by ordinary linear regression

    No full text
    Consider the problem of learning a large number of response functions simultaneously based on the same input variables. The training data consist of a single independent random sample of the input variables drawn from a common distribution together with the associated responses. The input variables are mapped into a highdimensional linear space, called the feature space, and the response functions are modelled as linear functionals of the mapped features, with coefficients calibrated via ordinary least squares. We provide convergence guarantees on the worst-case excess prediction risk by controlling the convergence rate of the excess risk uniformly in the response function. The dimension of the feature map is allowed to tend to infinity with the sample size. The collection of response functions, although potentially infinite, is supposed to have a finite Vapnik–Chervonenkis dimension. The bound derived can be applied when building multiple surrogate models in a reasonable computing time

    Federated Averaging Langevin Dynamics: Toward a unified theory and new algorithms

    No full text
    58 pagesInternational audienceThis paper focuses on Bayesian inference in a federated learning context (FL). While several distributed MCMC algorithms have been proposed, few consider the specific limitations of FL such as communication bottlenecks and statistical heterogeneity. Recently, Federated Averaging Langevin Dynamics (FALD) was introduced, which extends the Federated Averaging algorithm to Bayesian inference. We obtain a novel tight non-asymptotic upper bound on the Wasserstein distance to the global posterior for FALD. This bound highlights the effects of statistical heterogeneity, which causes a drift in the local updates that negatively impacts convergence. We propose a new algorithm VR-FALD* that uses control variates to correct the client drift. We establish non-asymptotic bounds showing that VR-FALD* is not affected by statistical heterogeneity. Finally, we illustrate our results on several FL benchmarks for Bayesian inference

    Membership Inference Attacks via Adversarial Examples

    No full text
    Trustworthy and Socially Responsible Machine Learning (TSRML 2022) co-located with NeurIPS 2022The raise of machine learning and deep learning led to significant improvement in several domains. This change is supported by both the dramatic rise in computation power and the collection of large datasets. Such massive datasets often include personal data which can represent a threat to privacy. Membership inference attacks are a novel direction of research which aims at recovering training data used by a learning algorithm. In this paper, we develop a mean to measure the leakage of training data leveraging a quantity appearing as a proxy of the total variation of a trained model near its training samples. We extend our work by providing a novel defense mechanism. Our contributions are supported by empirical evidence through convincing numerical experiments

    QLSD: Quantised Langevin Stochastic Dynamics for Bayesian Federated Learning

    No full text
    International audienceThe objective of Federated Learning (FL) is to perform statistical inference for data which are decentralised and stored locally on networked clients. FL raises many constraints which include privacy and data ownership, communication overhead, statistical heterogeneity, and partial client participation. In this paper, we address these problems in the framework of the Bayesian paradigm. To this end, we propose a novel federated Markov Chain Monte Carlo algorithm, referred to as Quantised Langevin Stochastic Dynamics which may be seen as an extension to the FL setting of Stochastic Gradient Langevin Dynamics, which handles the communication bottleneck using gradient compression. To improve performance, we then introduce variance reduction techniques, which lead to two improved versions coined QLSD and QLSD ++. We give both non-asymptotic and asymptotic convergence guarantees for the proposed algorithms. We illustrate their performances using various Bayesian Federated Learning benchmarks
    corecore